5 research outputs found

    An Assessment on the Non-Invasive Methods for Condition Monitoring of Induction Motors

    Get PDF
    The ability to forecast motor mechanical faults at incipient stages is vital to reducing maintenance costs, operation downtime and safety hazards. This paper synthesized the progress in the research and development in condition monitoring and fault diagnosis of induction motors. The motor condition monitoring techniques are mainly classified into two categories that are invasive and non-invasive techniques. The invasive techniques are very basic, but they have some implementation difficulties and high cost. The non-invasive methods, namely MCSA, PVA and IPA, overcome the disadvantages associated to invasive methods. This book chapter reviews the various non-invasive condition monitoring methods for diagnosis of mechanical faults in induction motor and concludes that the instantaneous power analysis (IPA) and Park vector analysis (PVA) methods are best suitable for the diagnosis of small fault signatures associated to mechanical faults. Recommendations for the future research in these areas are also presented

    Wireless E-Nose Sensors to Detect Volatile Organic Gases through Multivariate Analysis

    Get PDF
    Gas sensors are critical components when adhering to health safety and environmental policies in various manufacturing industries, such as the petroleum and oil industry; scent and makeup production; food and beverage manufacturing; chemical engineering; pollution monitoring. In recent times, gas sensors have been introduced to medical diagnostics, bioprocesses, and plant disease diagnosis processes. There could be an adverse impact on human health due to the mixture of various gases (e.g., acetone (A), ethanol (E), propane (P)) that vent out from industrial areas. Therefore, it is important to accurately detect and differentiate such gases. Towards this goal, this paper presents a novel electronic nose (e-nose) detection method to classify various explosive gases. To detect explosive gases, metal oxide semiconductor (MOS) sensors are used as reliable tools to detect such volatile gases. The data received from MOS sensors are processed through a multivariate analysis technique to classify different categories of gases. Multivariate analysis was done using three variants—differential, relative, and fractional analyses—in principal components analysis (PCA). The MOS sensors also have three different designs: loading design, notch design, and Bi design. The proposed MOS sensor-based e-nose accurately detects and classifies three different gases, which indicates the reliability and practicality of the developed system. The developed system enables discrimination of these gases from the mixture. Based on the results from the proposed system, authorities can take preventive measures to deal with these gases to avoid their potential adverse impacts on employee health

    Analysis, design, and tuning of the two-input two-output fuzzy control systems using the simplified fuzzy rules

    No full text
    Most work on fuzzy control theory and application in the literature has dealt with single-input single-output (SISO) cases only. While the significance of multiple-input multiple-output (MIMO) fuzzy control is well recognized, it is much more difficult to study than the SISO control due to the coupling of the output variables and a much larger amount of design parameters of MIMO fuzzy controllers. At present, there exist little rigorous MIMO fuzzy control results, let alone a comprehensive theory. The trial-and-error method is often used for SISO fuzzy control; but it cannot be effective to the MIMO cases partially due to the number of design parameters and coupling. This dissertation attempts to address these issues in an analytical manner. While extensible to MIMO situations, this work is mainly focused on two-input two-output cases. This dissertation performs a systematic study of analysis, design, and tuning of the TITO Takagi-Sugeno (TS) fuzzy control systems. This study is applied to fuzzy control systems with relationship to their conventional Proportional-Integral-Derivative (PID) counterpart. In this dissertation, the simplified fuzzy rules scheme method is used to dramatically reduce the number of design parameters for TITO fuzzy controllers. The fuzzy controller structure analysis is investigated. The analysis shows that each output of the TITO TS fuzzy PI, PD, and PID controllers are proved to be the sum of two nonlinear, variable gains PI, PD, and PID controllers, respectively. Also, the analysis shows that the TITO TS fuzzy PI, PD, and PID controllers are linearizable at an equilibrium point, respectively. Also, analysis shows that local stability of TITO TS fuzzy system can be determined using Lyapunov linearization method. The simplified fuzzy rules scheme method shows a significant improvement to reduce the number of design parameters. The number of design parameters of the TITO TS fuzzy PI controller is reduced from 65 design parameters to only 7. The number of design parameters of the TITO TS fuzzy PID controller is reduced from 385 to 9. In this dissertation, a new systematic design and tuning procedure is presented. This procedure is applied to TITO TS fuzzy control systems by carrying a well known conventional MIMO control tuning method over the TITO fuzzy controllers. Also, the systematic design and tuning procedure is applied to SISO TS fuzzy control systems. Finally, a selection of examples in computer simulation is given to illustrate the effectiveness of the proposed study. The examples include tuning TITO practical model and SISO linear and nonlinear models

    DSP-Assisted Nonlinear Impairments Tolerant 100 Gbps Optical Backhaul Network for Long-Haul Transmission

    No full text
    High capacity long haul communication and cost-effective solutions for low loss transmission are the major advantages of optical fibers, which makes them a promising solution to be used for backhaul network transportation. A distortion-tolerant 100 Gbps framework that consists of long haul and high capacity transport based wavelength division multiplexed (WDM) system is investigated in this paper, with an analysis on different design parameters to mitigate the amplified spontaneous emission (ASE) noise and nonlinear effects due to the fiber transmission. The performance degradation in the presence of non-linear effects is evaluated and a digital signal processing (DSP) assisted receiver is proposed in order to achieve bit error rate (BER) of 1.56 × 10−6 and quality factor (Q-factor) of 5, using 25 and 50 GHz channel spacing with 90 μm2 effective area of the optical fiber. Analytical calculations of the proposed WDM system are presented and the simulation results verify the effectiveness of the proposed approach in order to mitigate non-linear effects for up to 300 km length of optical fiber transmission

    An Optimal Framework for WDM Systems Using Analytical Characterization of Refractive Index-Related Nonlinear Impairments

    No full text
    Nonlinear effects in the optical transmission systems (OTSs) are considered as the major performance limiting factor to provide high transmission rates over ultra-long distances. As the demands for system capacity, transmission range and the number of users is increasing exponentially with the development of mobile broadband, new challenges are being faced by the backbone optical networks. Mainly, the refractive index related non-linearities (RIrNLs) need to be characterized to design an optimal OTS for error-free transmission with provision of wavelength division multiplexing (WDM) to support for multiple channels. This paper provides an estimation technique of RIrNLs for long-haul transmission and their treatment for different channel spacing and the number of channels in a WDM system operating frequency domain multiple in multiple out (FD-MIMO) equalizer based digital signal processing (DSP) receiver and microstrip Chebyshev low pass filter. The main focus of this work is to utilize the existing structure of OTS for RIrNLs treatment with a low cost solution. Thus, by varying the parameters of the third order dispersion parameters, group velocity dispersion parameters, phase modulation dispersion and nonlinear refractive index, the impact of RIrNLs is investigated in detail to enhance the transmission range and capacity of the current OTS. The proposed system is analyzed in terms of range of input power, fiber length and received power for OTS figure of merits including bit error rate (BER) and optical signal-to-noise ratio (OSNR). Using duo-binary modulation, the BER achieved in this work is 10−5 till 500 km range, for maximum number of 32 channels, with 100 Gbps aggregate data rate, which shows the feasibility and effectiveness of our proposed model
    corecore